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THE TWO-POINT BOUNDARY VALUE PROBLEM IN 
GEOMETRICAL MECHANICS WITH DISCONTINUOUS FORCES* 

B. D. GEL'MAN and Iu. E. GLIKLIKH 

The behavior of mechanical systems in arbitrary finite-dimensional configuration 

spaces is analyzed using the terminology common to mechanics of geometric-different- 

ial formalism (description of virtually all classes of classical mechanics of 
systems and solid bodies can be found, e.g., in /l-33/). 

This paper deals with mechanical systems with discontinuous forces which makes it pos- 

sible to include in the investigation systems with dry friction, controlled systems, motions 

in various media, etc. The method of supplementing the definition of discontinuous forces in 
relation to a multiple-valued vector field with convex images (see, e.g., /4,5/) is used here. 
It is often applied in classical "plane" situations. The proposed here method of definition 
supplementing takes into account the specific properties of the nonlinear configuration space, 

viz. that the sought convex sets in tangent spaces are assumed invariant, i.e. that they are 
independent of the selection of local coordinate system. 

Existence of the system trajectory passing through two specified points of the configura- 

tion space (the two-point boundary value problem) is investigated in the case of systems with 

bounded discontinuous force field. 

Note that, unlike in the plane case, this problem is not always solvable even for contin- 
uous bounded forces in an arbitrary configuration space. An example of a mechanical system 

in a two-dimensional sphere with a bounded autonomous smooth force field (independent of 
velocity) of which not a single trajectory issuing from the south pole reaches the north pole 

was given in a paper by Gliklikh (**). 
The basic assertion of this investigation is that on the assumptions made here there 

exists a solution of the two-point boundary value problem in some time interval for points of 

the configuration space that are not conjugate on some geodesic of the Riemann metric that 

defines the system kinetic energy. A multi-valued operator of the integral type in whose 

construction the Riemann parallel transfer is used, is derived for the investigation of the 

problem. 

1. Let us consider a discontinuous locally bounded vector field fin asmooth finite-dim- 

ensional manifold N, and determine for any point n,=jV of the tangential space TsoN the 

set H(n,) as the set of all limit points of the sequence if(~)) for any sequence of RI, + n,,, 
,+f,+ Note that the set H(n,) is defined by 

,;I0 (cl I( u. f (,l))\f (%)I) 
E 

where U, is the a-neighborhood of point no. Let us consider the set F (nl,) c T,O-v, F (no) = 
ZR(n,)(cZis the convex closure). We, thus, have obtained the multi-valued mapping of F from 

N into the tangent stratification TIV which associates a convex set in T,N with every point 

IlEN; it seems appropriate to call that image the multi-valued vector field with convex 

images. 
Note that, when the field f at point II is continuous, F (n) = f(n). 

Let us study the properties of mapping li : jV _ T’:V . Basic definitions of the theory of 

multi-valued mapping appear in /5,6/. 

Lemma 1. Mapping F is upper semi-continuous. 

Proof. Let *EN, 6>ll be a real number, and p some metric on TN that specifies the 

topology equivalent to the natural topology of the tangent stratification. We denote by R6(n) 

and F*(n) the 6 -neighborhoodsin TN of setsR(n) F(n), respectively, and shall show that for 

any 6 there exists a neighborhood (i(n)c N of point n such that for every h'~ (i(n) we have 

R (PI’) C R* (n) and, ConSeqUently,F(n’)~ Fb(n). By the definition of set R(m) there exists an open 

neighborhood u(n) of point n such that for all n'~ [J(n) there exists the distance p (f (n’), 

R (4) < 6. An open neighborhood U(n') of point R' exists in U (n) such that p (f (n”), R (,I’)) < S 

* Prikl.Matem.Mekhan.,44,No.3,565-569,198O 

**) IU. E. Gliklikh, Two-point boundary value problem in the geometrical mechanics of Systems 

with bounded force field. Voronezh, 1977. MS No. 2217-77 deposited with VINITI, June 6, 1977. 
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is satisfied for any n"~ U(n'). We select from U(n') any sequence nlr"-n' and obtain 

lim p (f (nk"), R (n)) =: p (lim f (nb”), R (n)) < 6, Q” - n’ 

Thus R (n’) C R6 (n) and F(r~')cF*(n). The lemma is proved. 

2. Let us now consider a mechanical system with quadratic kinetic energy (M, T,a) (see 

/7/), where the configuration space M is a smooth finite-dimensional manifold; the kinetic 

energy T is a quadratic function on the tangent stratification (the phase space) TM generat- 

ed by some Riemannian metric (,> in M : T(X) = ‘i, (X, X>; and the force field OL (t, nl, X) is a 

horizontal l-form on TM which generally depends on time t and on the phase space point 

(m,X) with FLEM,XET~M (see, also, /8/). 

The trajectory of a mechanical system on the phase space TM is an integral curve of a 

special vector field (second order equation) F= kh(n,X)i-&,(t,nl, X), where &,(m,X) is the geo- 

desic pulverization of coherence of the Levi-Civita metric c,), and &(t,nr, X) is the vert- 

ical lift of vector X,(t,n~,X)e T,,,M to point X , determined by the equality <X,, I') = 

a(dn-l,XY)for any vector YET,M (n is the natural projection of TM on ni). Vector X, is 

correctly determined, since a is a horizontal l-form. 

Expressing the trajectory r(t) on the configuration space in terms of the covariant 

derivative of coherence of Levi-Civita metric (,) , we obtain the equation 

D 
-Ji y'(t) = x, (& Y (03 Y. P)) (2.1) 

where (D/at is the indicated covariant derivative. Equality (2.1) is an invariant formula- 

tion of the second Newton's law. Note that any second order differential equation on 

Riemannian manifold can be represented in the form of an equality of type (2.1) /9/. 

We shall consider such mechanical systems whose trajectory does not approach infinity in 

a finite time interval, when moving by inertia, i.e. in the absence of a force field. In 
terms of Riemannian goemetry this means that the metric (,) is total. We impose on field OL 

the requirement of boundedness I\a() in some neighborhood of every point (I, m. X) without as- 
suming the continuity with respect to any of the variables. 

In investigating the behavior of the mechanical field trajectory we use the construction 

described in Sect.1 for passing from the discontinuous vector field 5,,+5, on TM to the 

multi-valued upper semi-continuous vector field with convex images. For the vector field 

kh + 5, on TM the corresponding multi-valued field is of the form 5h + %a(& m, X), where 

E =(t,n~, X) is the vertical lift to point -U X of the set with Q (t,m, X)=S,(t.& X). , and Q(t,n,, 

X) is the set of all limit points of sequences (X,(tk,,l~, X,)) for any sequence (fk. rnr, X,) - 
(t> m, X), (tk. Q, Xk) # (t! m, X). 

We thus obtain the second order differential inclusion on manifold M 

-$ v'(t) E S,(& y (t)? v' (i)) (2.2) 

with convex images, which describes the trajectory of a system with discontinuous force field 

in the configuration space. 

The C' curve u(t) such that function v'(1) is absolutely continuous and for Dy’ (t) / dt the 

inclusion (2.2) is almost everywhere satisfied, is called the solution of inclusion (2.2). 

The local theorem on the existence of solution of inclusion (2.2) follows the similar 

theorem for first order differential inclusions in a linear space (see, e.g., /5/). 

Note that from the mechanical point of view of interest is the case when the solution of 

the differential inclusion is locally unique. Some uniqueness theorems were obtained in /4/. 

3. To investigate the over-all behavior of solutions of inclusion (2.2) on the complete 

Riemannian manifold M we construct an operator of the integral type for whose determination 

the Riemann parallel transfer is used. 

Let iL' : [O, to1 - T,M be a continuous curve in the tangential space T,oM,ru,~ M. We denote 

by ~119 (t) the C1 curve in the manifold M, such that Slu(O)=r% and the vector dSw(t)ldtE 
TsD,tjM is for all t parallel to vector !u(~)E T,,M along the curve S~U itself. Curve SW 
exists and is unique. 

Indeed 
A’w(t) = h-' 

r 
w(r) dr 

0 

where 6 is the Cartan involute /lo/. Since M is a complete Riemannian manifold, curve SW 
is determinate on the whole interval lO,t,l (see /9/). The operator S has been, thus, cor- 
rectly determined /9,11/. It transfers the Banach space CO([O, toI, T,?Cr, of continuous curves 
in T,,,@M into the Banach manifold C' (IO, toI, M) of C'-curves in M. 

Let us specify the properties of operator S which will be subsequently required. Detail- 

ed proofs of these statements were given earlier (see footnote on p.396). 



398 B. D. Gel'man and Iu. E. Gliklikh 

Lenrma 2. operator s : Co ([O, bl, T,,M) - C’ ([O, tOI, M) is continuous. 

Lemma 3. The inequality )I dSw (t)idt )I < k is satisfied for any curve w(t) from the sphere 
17, of radius k>O whose center is at the zero of space c"([O,(,], T,,,*,+J) for all 1 E IO, tnl. 

This statement follows from that the Riemann parallel transfer does not change the norm 

of a vector. 

Lemma 4. Let point )>I, E M be not a conjugate of IR" along some geodesic of metric 

< , ). For any geodesic a (t), a (0) = u,,,. a (1) -= m, along which ~1" and 7)~~ are not conjugate and 

any number k > o there exists a number L (III,,, I?+, k, a) > 0 such that when 0 < t, < L (I+, m,, m, a) 

a unique vector C,ET,,,~M continuously dependent on ~9 and such that S (10 + C,UJ (t,) = ))I* can 

be found for any curve w (1)~ Ck C C”([O, t,], T,,,. M) in some bounded neighborhood of vector 
1,-Q' (0) E T,M. 

Let us consider the multi-valued vector field E, (1, v (n, y' (0) along the Cl-curve v(t) = 
SC (1). We transfer all sets p LcL parallel with y to point r)10 y (0) which for fixed u? 
yields the multi-valued mapping TGSU. from segment [~,t,] into T,_M with convex images. 

By using the properties of parallel transfer and the upper semi-continuity of field S:,(t,m,X) 

it can be shown that the mapping ToS : C”(l0, to], T_M) Y IO, t,,] - TmOM is upper semi-continuous. Let 

us consider the set of all measurable cross sections PrusII~ of the multi-valued mapping roS;c: 

(0. I,,] - T,M, that are known to exist /12/. The local boundedness of field X, and com- 

pactness of curve y = SIU in IO, to] imply that all curves from prosw are bounded, i.e. in- 

tegrable. It is now possible to determine the multi-valued mapping \pr,s in terms of convex 

images in the Banach space C"' (IO, lo), T,,$') 

Lemma 5. Mapping spr.,S transforms bounded sets C'((lO, tOl,T,OM) into compact ones. 

Proof. Lemma 3 and the completeness of metric (, ) imply that for any sphere cik C c” 

(IO, &I, T&f) the set of curves ((v. ?')I y E SUk) lies in the compact set of manifold TM. It 

follows then from the local,boundedness of X,(t,m,X) that all sets E,(t, y (f),y'(t)),y~SU~ are 

uniformly bounded. Since the parallel transfer does not alter the norm of a vector, all sets 

(r&U)(f), W ,?a Li, and their measurable cross sections ProSto are uniformly bounded. Hence all 

continuous curves 

L' = ,,u,;, (1 Pro”) w 

are uniformly boundedandequicontinuous. The lemma is proved. 

Lemma 6. Mapping jPr& is upper semi-continuous. 

Proof. It is sufficient to show that the multi-valued mapping \ PToS has a closed 

diagram, i.e. that as wk- u'~ and when ok E (1 pros) ‘Ok, ~9~ - q , the inclusion u0 E (1 nu)w, is 

satisfied or, what is equivalent, that inclusion v,'(t)~(foS~,J !t) is satisfied for almost all 

f. Since mapping \PY.S transforms bounded sets into compact ones, the closeness of the 

diagramimpliesupper semi-continuity /6/. Inclusion v~'(~)E(TI~.SIQ)(~) follows from the convexity 

of sets (r&lo,)(t) and upper semi-continuity of mapping (rOslu)(t) with respect to III and t. 

A detailed proof a similar inclusion in a simpler case is given in /13/. 

4. Let us now formulate and prove the fundamental statement. 

Theorem. We assume that point ml is not a conjugate of point m, along some geodesic 

= of the metric <, ) and that field a(f,~r,X) is by norm uniformly bounded for all t, m,X. 

There exists such a number L (mO,ru,,a) that for any t,,O < 4 < L (?Q, m,, a) a solution y (f)of in- 

clusion (2.2), such that v(O)=m, and v(t,,)= m, can be found. 

Proof. Since the field a(&r,z,X) is uniformly bounded, the multi-valued vector field 

Sa(t,m, X) is also uniformly bound by some number k>O. It can be shown that for fairly small 

t,>o the inequality t, < L (ma7 ml, %, 0) r where L (mo, m,, kt,, a) is a number from Lemma 4, is 

satisfied. 
We determine the number L(n+,,m,, a) by the equality L(m,,ml,o)= supr, such that t1 < L (mo, 

ml. kt,, a). 
Let us consider the multi-valued upper semi-continuous compact mapping Au,= JPYOS (IU+C~), 

where C, is a vector from Lemma 4, on the sphere UktO c Co ([O, to,], T,,,a M). Since the parallel 

transfer does not alter the norm of a vector, A transforms "kfa int6 itself and, consequently, 

has always a fixed point II+,, IL'~ EAw,, /14/. 
Let us show that yO= S(w,+ C,J is the sought solution of (2.2). By construction ~~(0) =~ 

mO, To (to) = m,. yOis the C' curve, and function yO' is absolutely continuous. Since u0 is 

the fixed point of A, hence wO' is the cross section rOs(w, + C,,), i.e. at points f, where 
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ad' exists, the inclusion w,,'(t)= PoS (Q + C,J(~) is satisfied. By the construction and proper- 

ties of the covariant derivative, after the parallel transfer of wO' (0 and ToS (wO + C,J (t) 
along y0 to point r,,(t) we obtain, respectively, &'(t)/dt and E, (t, y. (t), ~0’ (t)) . Thus DY,' (t)/dt 

E 8, (t. Yo (0. vo' (t)). The theorem is proved. 

Note that when ~8~ and n~are not conjugate along several geodesics, any of them can be 
used for proving the existence of solution. The numbers L and the solutions themselves con- 

structed on different geodesics are generally different. 

If the configuration space M (with metric (,)) is a compact manifold of nonpositive 
curvature and the force field bounded, there exists a number L>O such that for any points 
?!Lg and ml and any time [O, to,J,O<t,<L the two-point boundary value problem is solvable. 

This is the result of absence of conjugate points and compactness of the manifold. 

When M is a plane manifold, it is possible to show that the number L from Lemma 4 is 

infinite, i.e. we obtain the known result that in the plane case with bounded force field 

the two-point boundary value problem is solvable for any two points and any time interval. 

REFERENCES 

1. SYNGE, J. L. Tensorial Methods in Dynamics. University of Toronto Studies. Appl. Math. 
Series, No.2, 1936. 

2. GOKHMAN, A. V., Geometric-Differential Foundations of Classical Dynamics of Systems.Izd. 

Saratovsk. Univ., 1969. 

3. ARNOL'D, V. I., Methematical Methods of Classical Mechanics. Moscow, "Nauka", 1974. 

4. FILIPPOV, A. F., Differential equations with discontinuous right-hand side. Matem. Sb., 

Vo1.51, No.1, 1960. 

5. GELIG, A. Kh., LEONOV, G. A., and IAKUBOVICH, V. A., Stability of Nonlinear Systems with 
Nonunique Equilibrium State. Moscow, "Nauka", 1978. 

6. BERGE, C., Espaces Topologiques. Fonctions Multivoques. Paris, Dunod, 1959. 

7. GODBILLON, C., Gsometrie Differentielle et Mgcanique Analytique. Paris, Hermann, 1969. 

8. VERSHIK, A. M. and FADDEEV, L. D., Lagrangian mechanics in invariant presentation. In: 
Problems of Theoretical Physics, No.2. Leningrad, Izd. Leningradsk. Univ., 1975. 

9. GLIKLIKH, Iu. E., On a generalization of the Hopf-Rinow theorem on geodesics. Uspekhi 
Matem. Nauk., vo1.29, No.6, 1974. 

10. BISHOP, R. L. and CRITTENDEN, R. J., Geometry of Manifolds.NewYork-London, Acad. Press, 
1964. 

11. GLIKLIKH, Iu. E., Integral Operators on Manifolds. Tr. Voronezhsk. Univ., No.4, 1971. 

12. VARGA, J., Optimal Control of Differential and Functional Equations. New York-London, 

Acad. Press, 1972. 

13. GEL'MAN, B. D., Integral multi-valued operators and differential equations. In: Tr. 
Aspirantov Matem. Fakul'teta Voronezhsk. Univ., No.1, 1971. 

14. BORISOVICH, Iu. G., GEL'MAN, B. D., MUKHAMEDIEV, E., and OBUKHOVSKII, V. V., On the rota- 
tion of multi-valued vector fields. Dokl. Akad. Nauk SSSR, Vo1.185, No.5, 1969. 

Translated by J.J.D. 


